Теоретические основы изучения принципа действия прослушивающих устройств. Принципы наноэлектроники Телефоны c наружной активацией

Область электроники, занимающаяся разработкой технологических и физических основ построения интегральных электронных схем с размерами элементов менее 100 нанометров, называется наноэлектроникой. Сам термин «наноэлектроника» отражает переход от микроэлектроники современных полупроводников, где размеры элементов измеряются единицами микрометров, к более мелким элементам - с размерами в десятки нанометров.

Каждый из нас ежедневно пользуется электроникой, и наверняка многие люди уже замечают некоторые однозначные тенденции. Память в компьютерах увеличивается, процессоры становятся производительнее, размеры устройств уменьшается. С чем это связано?

В первую очередь — с изменением физических размеров элементов микросхем, из которых все электронные устройства по сути и строятся. Хоть физика процессов остается на сегодняшний день приблизительно такой же, размеры устройств становятся все меньше и меньше. Крупный полупроводниковый прибор работает медленнее и потребляет больше энергии, а нанотранзистор - и работает быстрее, и энергии потребляет меньше.

Современные нанотехнологии на видео:

Известно, что все вещественные тела состоят из атомов. И почему бы электронике не достичь атомного масштаба? Эта новая область электроники позволит решать такие задачи, которые просто принципиально невозможно решить.

Большой интерес вызывает сейчас графен и подобные ему монослойные материалы (смотрите статью - ). Такие материалы в один атом толщиной обладают замечательными свойствами, которые можно комбинировать для создания различных электронных схем.

Например технологии связанные с зондовой микроскопией позволяют строить на поверхности проводника в сверхвысоком вакууме разнообразные структуры из отдельных атомов, просто переставляя их. Чем не основа для создания одноатомных электронных устройств?

Манипуляции веществом на молекулярном уровне уже затронули многие отрасли промышленности, не обошли они и электронику. Микропроцессоры и интегральные микросхемы строятся именно так. Ведущие страны вкладываются в дальнейшее развитие данного технологического пути — чтобы переход на наноуровень происходил быстрее, шире, и совершенствовался бы далее.

Кое-какие успехи, кстати уже достигнуты. Intel в 2007 году заявила, что процессор на базе структурного элемента размером в 45 нм разработан (представили VIA Nano) и следующим шагом будет достичь 5 нм. IBM собираются добиться 9 нм благодаря графену.

На дворе 21 столетие, - время, когда давно наступил век информационных технологий, и для нас, живущих в эту эру, самым важным и дорогим товарам стала информация. В сегодняшние дни для получения необходимой информации заинтересованные лица могут применить любые доступные им средства. А установка и использование различной прослушивающий аппаратуры, такой как жучки, радиомикрофоны, подслушивающие устройства, давно не является исключительной прерогативой спецслужб - сейчас это может сделать чуть ли не каждый.

Говоря о способах получения информации, мы фокусируемся именно на способах прослушивания помещений при помощи скрытых технических средств. В большинстве случаев оно выполняется с помощью направленных микрофонов, телефонов, GSM передатчиков, радиожучков, лазерных устройств съема информации. Согласно конституции для граждан может быть введено ограничение на неприкосновенность частной жизни, но только по санкции суда, к сожалению, этот принцип часто нарушается. Происходит это из-за высокой криминализации общества, а также вытекающей из этого потребности граждан в самозащите.

Многие даже не догадываются, что прослушивающие устройства появились задолго до нашего времени. Естественное желание знать тайны было свойственно людям во все времена. Тогда как до XX столетия приходилось обходится скрытыми комнатами, которые давали возможность находится рядом при интересных разговорах, то в настоящее время возможности для подслушивания стали существенно шире. Впервые широкую огласку приобрела история с "жучками" в 1972 году в Соединенных Штатах. В то время группа специалистов при содействии некоторых сотрудников предвыборного штаба Никсона незаметно проскользнула в штаб -квартиру кандидата от партии демократов. После того, как не было найдено полезных документов, проникшие установили там радиомикрофоны. Эти жучки позволили узнать о чем разговаривают активисты в конкурирующем штабе. В результате дело получило широкую огласку. Таким образом "жучки" перестали быть лишь инструментом спецслужб, стали методом доступным для гражданских применений - корпоративного, политического шпионажа, а также начали использоваться для частного сыска.

В настоящее время прослушивание разговоров может организовать почти каждый. Для этого не применяются сложные технологии. Любой подкованный технический специалист может "состряпать" такое устройство за день. Главным техническим средством для прослушки является жучок - радиомикрофон. Со временем изменились лишь его размеры, а от модели к модели они в основном различаются только маскировкой. Главная тенденция последнего времени - уменьшение габаритов компонентов электронной техники. Наиболее распространённые прослушивающие устройства которые используются описаны ниже.

Радиожучки

Жучок с радиопередатчиком - наиболее удобное для установки устройство для скрытого прослушивания. В большинстве случаев, они содержат радиопередатчик в УКВ диапазоне. Бывают как временные так и установленые стационарно. Те что устанавливаются стационарно запитаны от электросети, временные жучки запитаны от элемента питания - батарейки или аккумулятора. Чаще всего подобные устройства устанавливают в бытовую технику, розетки, осветительные приборы, прочие элементы интерьера. Временные приборы, как правило, рассчитаны на сравнительно короткий срок работы, устанавливаются тайно. Часто, для такого вида работы привлекаются сотрудники работающие на объекте или посетители. Жучки стараются установить в тех местах, где найти их будет затруднительно. Бывает такое, что прослушивающие устройства маскируются под повседневные предметы, которые часто используют в работе или интерьере и находятся на видном месте. Это могут быть шариковые ручки, сувениры, малозаметные безделушки.

Основным недостатком временных устройств есть то, что они ограничены временем автономной работы. Период времени автономной работы сильно зависит от мощности радиопередатчика и емкости элементов питания. Дальность перехвата разговоров сильно зависит от чувствительности микрофона встроенного в жучок, разговоры принимаются на расстоянии от 3 до 25 метров. При этом радиус передачи снятой информации по радиоканалу может составлять от нескольких десятков до сотен метров. Иногда для увеличения дальности передачи могут быть использованы промежуточные ретрансляторы. Установка жучков на металлических предметах, трубах отопления может служить как дополнительная антенна для усиления.

Радиозакладки выпускаемые серийно работают в разных частотных диапазонах - от единиц мегагерц до гигагерца. В импортных образцах чаще всего используются частоты 20-25 МГц, 130-180 МГц, 390-520 МГц. Чем выше частота передачи, тем больше дальность работы передатчиков в условиях помещения с кирпичными и бетонными стенами. Но для таких частот требуется специальная приемная аппаратура. Для защиты от обнаружения, профессионалы иногда применяют методы, которые позволяют растянуть спектр сигнала, используют двойную модуляцию несущей частоты, применяют другие похожие схемы.

Телефонные "жучки"

Основное предназначение телефонных "жучков" - снимать и передавать разговоры в закрытой комнате при положенной телефонной трубке с передачей данных в телефонную линию. При такой схеме становится возможным слушать как телефонные разговоры , так и комнатные разговоры . Также используются следующие приемы направленные на прослушку разговоров в комнате: прослушка через цепь квартирного звонка, прослушивание с помощью техники СВЧ отражения от вибрирующих поверхностей с последующей демодуляцией звукового сигнала, установка GSM жучков работающих по радиоканалу телефонного оператора.

Телефоны c наружной активацией

При такой схеме контролируемый телефонный аппарат не трогают. Данные считываются с телефонной линии при положенной трубке. Такая возможность обеспечивается подачей внешнего высокочастотного сигнала, который вызывает активацию микрофона телефонной трубки. Порой получается перехватить микротоки, возникающие в электромагнитном звонке от звуковых вибраций. Таким же образом есть возможность перехватить микротоки звонка в квартире.

Сетевые передатчики

Они устанавливаются в электроприборы и передают информацию в низкочастотном, звуковом диапазоне. В качестве канала для передачи звуковой информации ими используется обычная электропроводка. Снять такой сигнал можно с любой розетки, которая находится с том же сегменте электросети. Естественно, первый же трансформатор полностью блокирует такой сигнал, по этому в соседнем сегменте электросети его считать будет невозможно.

Стационарные микрофоны

Микрофоны стационарной установки могут быть замаскированы и установлены в самых неожиданных местах. Их соединяют незаметными тонкими проводами с пунктом прослушки, который создается вблизи контролируемого помещения. Хорошими микрофонами могут стать столешницы, полки для документов с жестко прикрепленными к ним пьезодатчиками. Провода от таких микрофонов могут быть протянуты под гипсокартоном, обоями, в плинтусах либо под ковролином. Вывод проводов зачастую делают в местах вывода телефонных или компьютерных коммуникаций, входящих в помещение. Основным недостатком такого рода прослушивающих устройств является необходимость длительной предварительной подготовки помещения, в котором устанавливается спецсредство.

Подведенные микрофоны

Подведенный микрофон - устройство которое устанавливают не внутри, а снаружи контролируемого помещения. Для такой установки, безусловно, требуется иметь доступ к одной из внешних стен помещения, либо к инженерным коммуникациям, которые подводятся в объект. Для осуществления прослушки, например, можно снизу под дверь прикрепить плоский кристаллический микрофон. Если у смеженных комнат используются симметричные розетки, можно воспользоваться тем, что из одной розетки есть доступ к другой, а там уже можно поставить микрофон. В ряде случаев, можно просверлить незаметное микроотверстие в стене, и воспользоваться игольчатым микрофоном, в этом случае звук можно подвести через тонкую трубку длиной до 20-30 см.

Контактный микрофон

В качестве примера такого приспособления можно привести стандартный медицинский стетоскоп прикрепленный к микрофонному капсюлю, который подключен к усилителю. Бывает такое, что достаточно стетоскопа без дополнительной электроники.

Высококачественные датчики можно сделать из пьезо-керамических головок или обычных пьезоизлучателей. В качестве доноров могут быть использованы проигрыватели, электрические часы, игрушки с звуковыми эффектами, телефоны или сувениры. Эти устройства воспринимают малейшие колебания пластинок и тем самым позволяют снимать достаточно тихий сигнал. Но для них требуется тщательно выбирать место для установки. Оно зависит от особенностей конкретной стены или инженерной коммуникации. В ряде случаев есть смысл приклеить пьезодатчик к внешнему стеклу окна. Отличный сигнал можно снимать с труб системы отопления.

Импровизированные резонаторы

Подслушивать разговор из соседнего помещения зачастую можно и без специальной аппаратуры. Для этого достаточно бокала для вина или аналогичной по форме прочей питейной емкости. Ободок бокала сильно прижимается к стене, а дно прикладывается к уху. Эффективность такого резонатора сильно зависит от толщины, материала и конфигурации стены, а также от формы, размера и материала питейного прибора.

Есть и другие варианты для прослушивания: модуляция луча лазера вибрациями оконного стекла, съем побочных электромагнитных излучений домашней и офисной радиоаппаратуры, активация пассивных электромагнитных излучателей бесконтактным способом. Но эти методы достаточно сложны для аматеров и используются в основном профессионалами дела.

  • Программа AudioSP -
  • Наноэлектроника – область электроники, связанная с разработкой архитектур и технологий производства функциональных устройств электроники с топологическими размерами, не превышающими 100 нм (в том числе интегральных схем), и приборов на основе таких устройств, а также с изучением физических основ функционирования таких устройств и приборов.

    Уже в начале нашего века появились серьезные преграды на пути развития электроники. Прежде всего это касается роста степени интеграции и быстродействия интегральных схем (ИС). Планарная технология приближается к фундаментальным пределам, определяемым самой природой. Ведущие производители ИС уверенно осваивают технологию 90 нм. Казалось бы, “еще немного, еще чуть-чуть”, и будет технология в 50 нм, но… в силу вступают квантовые законы и эффекты. Например, пробел между проводящими дорожками шириной 50 нм будет насквозь “простреливаться” в поперечном направлении электронами за счет туннельного эффекта.

    Другие проблемы – отвод тепла, выделяемого элементами ИС, сверхплотно расположенными в микрообъеме кристалла, а также уровень собственных шумов, равный полезному сигналу или превышающий его.

    В связи с этим, рассматриваются различные пути преодоления трудностей, связанных с нанометровыми масштабами. Один из возможных путей дальнейшего прогресса – разработка миниатюрных интегральных устройств, в которых роль электронов частично или полностью передана фотонам. Это должно привести к созданию вычислительной техники, превосходящей по быстродействию и информационной емкости современные

    электронные устройства. Для реализации приборов с квантовой связью или устройств оптической обработки информации могут быть использованы квантовые плоскости на основе множества чередующихся сверхтонких (толщиной в один атом) полупроводниковых пленок. Замена электронов на фотоны породило новое направление в электронике – нанофотонику.

    Союз магнитных полупроводников с фотоникой позволит создать запоминающие устройства на ядрах атомов. А благодаря интеграции традиционных составных частей компьютера на одном магнитно-полупроводниковом оптическом чипе мы получим сверхбыстрые и сверхэффективные нанокомпьютеры и другие устройства обработки, передачи и хранения данных. Свою лепту в повышение быстродействия внесет также отказ от необходимости изменять способ представления информации в памяти, процессоре, канале передачи данных.

    Использование на чипе магнитооптоэлектронных структур позволит изготавливать очень быстрые переключатели и коммутаторы сигналов, способные работать на частотах в несколько терагерц. Следует также отметить, что магнитооптические полупроводники дадут возможность осуществлять прямое преобразование квантовой информации из электронного представления в оптическое и обратно минуя процесс детектирования.

    Еще одна альтернатива – углеродная наноэлектроника, где ведущая роль принадлежит уже знакомым нам углеродным нанотрубкам. Одним из уникальнейших свойств нанотрубок является возможность управления их физико-химическими свойствами посредством изменения хиральности – скрученности решетки относительно продольной оси.

    Всего лишь правильно изогнув нанотрубку в нужном месте, можно с легкостью получить проволоку нанометрового диаметра, как с металлическим, так и с полупроводниковым типом проводимости. При этом соединение двух таких нанотрубок образует диод, а трубка, лежащая на поверхности окисленной кремниевой пластины, – канал нанотранзистора. В настоящее время зарубежные компании массово производят 65-нанометровые чипы. Такие наноэлектронные устройства уже созданы и доказали свою работоспособность.

    Исследователям из японского Национального Института материаловедения удалось перенести старую технологию механоэлектрических выключателей на квантовый уровень. Они создали миниатюрный механический выключатель, подобный тем, которые по сей день используется во многих бытовых приборах.

    Принцип работы выключателя прост – при подаче напряжения на устройство между двумя нанопроводниками возникает или распадается мостик из серебра, который выполняет роль проводника (рис. 5). Длина мостика, по которому протекает ток, – всего 1 нанометр. На отрезке длиной 1 нанометр можно расположить 10 атомов водорода. Транзистор, изготовленный на основе этого ключа, будет вдесятеро меньше транзистора, используемого в современном процессоре Pentium IV. Поэтому наноэлектроника на основе новых квантовых переключателей может вытеснить современную уже через 10 лет. В отличие от обычных механоэлектрических переключателей у нано-аналога нет движущихся механических частей. Перемычка из серебра возникает между шинами просто от подачи на них напряжения.

    Мостик, состоящий из атомов серебра, формируется, когда между шинами возникает небольшая положительная разность потенциалов. А когда это напряжение меняет знак, мостик разрушается. Устройство работает при комнатной температуре. Прототип, изготовленный учеными, переключается с частотой около 1 мегагерц (или миллион раз в секунду) при разнице потенциалов между шинами 0,6 В. Частота переключений устройства связана с толщиной шин. Если их еще уменьшить, то можно достичь частоты в 1 гигагерц. Этот частотный предел использует современная электроника.

    Рис 5. Матрица квантовых наноключей.

    Секрет формирования серебряного мостика состоит в составе нанопроводников шин. Один проводник состоит из сульфида серебра, покрытого тонким слоем чистого серебра. Второй – из платины, тоже покрытой чистым серебром. При возникновении между шинами положительной разности потенциалов атомы серебра “собираются” в мостик длиной 1 нанометр, а при изменении знака напряжения мостик разрушается и атомы возвращаются в прежнее состояние.

    Преимущество нового ключа состоит в том, что благодаря конструкции устройства емкость памяти на его основе будет больше той, которая существует сейчас. Если же использовать каждый ключ в качестве элемента памяти, то емкость одного слоя составит 2.5 гигабит на квадратный сантиметр, в то время как самые “сверхплотные” чипы памяти характеризуются емкостью в 1 гигабит на квадратный сантиметр.

    То, что новое устройство работает по законам квантовой физики, позволяет создавать на его основе многобитную память. Как известно, в квантовой физике различные энергетические состояния квантуются, принимая определенные дискретные состояния. Поэтому один ключ может представлять 16 состояний, или 4 бита.

    Исследователи смогли сконструировать логические ячейки И, ИЛИ и ИЛИ-НЕ на основе нового ключа. Все логические устройства показали хорошие рабочие характеристики. Теперь ученые разрабатывают методы серийного производства матрицы квантовых ключей.

    Наиболее революционные достижения наноэлектроники приближаются к квантовым пределам, установленным самой природой. Основу таких устройств составляет, например, работа одного электрона, имеющего два дискретных спиновых состояния. Но этой основе можно было бы построить квантовый компьютер, ведь для оперирования в двоичной системе исчисления достаточно реализовать элементы, способные иметь два устойчивых, стабильных во времени состояния, условно соответствующих логическим “0” и “1”, и допускать достаточно быстрые переключения между ними. Такие функции может выполнять электрон в двухуровневой системе (например, в двухатомной молекуле – переход с одного атома на другой). Другая возможность – переориентировать спин электрона из одного устойчивого состояния в другое с помощью, например, воздействия на него электромагнитного поля (этими исследованиями занимается научное направление – спинтроника).

    Магнитным спином обладают не только электроны, но и некоторые другие элементарные частицы, а также ядра атомов. В наше время спинтроника изучает магнитные и магнитооптические взаимодействия в полупроводниковых структурах, динамику и когерентные свойства спинов в конденсированных средах, а также квантовые магнитные явления в структурах нанометрового размера.

    В обычной твердотельной микроэлектронике информация представляется с помощью электрического заряда. Состояние магнитного момента при этом не задано - собственные моменты частиц ориентированы хаотично (рис. 6, а). Спинтроника же использует дополнительную возможность представления информации с помощью магнитного момента квантовых частиц (рис. 6, б). Одно из явлений спинтроники, названное гигантским магнитным сопротивлением (GMR), в конце 1990-х было использовано в магнитных головках жестких дисков. В результате емкость дисков за пять лет выросла более чем в сто раз.

    Рис. 6. Возможные направления ориентация спинов

    В будущем развитие спинтроники сулит производство компьютеров с быстродействием порядка 1 ТГц (1012 операций в секунду), плотность записи информации порядка 103 Тбит/см 2 , что на много порядков выше, чем сегодня. При такой плотности записи на диске размером с наручные часы можно было бы разместить базу данных, включающую фотографии, отпечатки пальцев, медицинские карты и биографии абсолютно всех жителей Земли.

    Третье перспективное направление развития нанотехники, отмеченное еще Эриком Дрекслером, – переход, как это ни кажется парадоксальным, от электронных устройств к механическим компьютерам.

    Обычный механический компьютер с элементами макроскопического масштаба, разумеется, очень громоздок и работает чрезвычайно медленно. Однако с компонентами размером в несколько атомов такой механический компьютер оказался бы в миллиарды раз компактней современной микроэлектроники. И хотя механические сигналы передаются в 100 тыс. раз медленнее, им нужно было бы “преодолевать” путь в 1 млн. раз меньший, чем электронам в современных микросхемах. Поэтому простой механический нанокомпьютер был бы более быстродействующим.

    Прототип такого устройства уже существует. Компанией IBM создана удивительная “многоножка”, которая стала первым квантовым коммерческим устройством хранения данных.

    Устройство состоит из записывающей матрицы манипуляторов и среды хранения информации, включающей в себя 4096 “ножек” (рис. 7), выполненных как устройства чтения/записи (подобные “ножки” – кантилеверы используются сейчас в электронных и атомно-силовывх микроскопах).

    Рис. 7. «Многоножка» под оптическим микроскопом.

    “Многоножка” – не простой жесткий диск, где головки не прикасаются к магнитной поверхности, она представляет собой “чистую” цифровую технологию. Принцип ее работы можно сравнить с работой старых проигрывателей граммпластинок, в которых считывающая вибрирующая игла скользила по борозде, несущей информацию, только у “многоножки” есть ряд кантилеверов, которые скользят по поверхности хранения данных, на которой есть углубления, кодирующие „1” и „0” (рис. 8).

    Рис. 8. “Многоножка” считывает информацию.

    Таким образом, отклонения кантилеверов от равновесного положения переводятся в набор „0” и „1”.

    Ведутся исследования и в области биоэлектроники. В отличие от обычных, биологические компьютеры могут выполнять одновременно не одну, а много программ. Израильские ученые создали компьютер, состоящий из одних только ДНК и энзимов, способный параллельно выполнять 1 млрд. программ без вмешательства оператора для обработки результатов. Применять такой компьютер планируют для одновременного биохимического анализа множества веществ и для шифрования больших изображений.

    Самодельное шпионское и охранное оборудование

    А. С. Уваров
    Радиоконструктор, 2001 год , № 3, стр 24- 25

    Внимание!!! Применение подобных устройств может быть расценено как противоправное (вмешательство в личную жизнь, промышленный шпионаж и так далее) и может повлечь ответственность! Поэтому данное устройство было разработано автором исключительно в целях проверки эффективности способов защиты от подобных прослушивающих устройств.

    Как известно утечка информации может иметь очень негативные последствия и поэтому возникает множество вопросов относительно защиты от различных подслушивающих устройств.

    Как известно способов прослушки может быть несколько- тайное подключение к телефонной линии, направленные или радиомикрофоны. Способы борьбы с такими устройствами более-менее известны- это и различные блокираторы телефонных линий, шифраторы речи и приборы для поиска жучков.

    Однако существует и еще один способ прослушки- это съем информации с оконного стекла. Как известно во время разговора возникают звуковые волны, которые и вызывают микровибрацию стекол на окнах. Если на стекло направить инфракрасный источник излучения, то отраженный сигнал будет промодулирован речевой информацией.

    От данного способа шпионажа существует способ защиты и он достаточно прост- нужно просто заставить оконное стекло немного вибрировать и тогда съем информации с него будет не возможен.

    Чтобы проконтролировать эффективность защиты от подобных способов прослушки, автором и был создан данный прибор: это устройство для съема речевой информации с оконного стекла работающее в инфракрасном диапазоне.

    Устройство состоит из двух частей: генератор инфракрасных импульсов (рисунок 1) и устройство для приема отраженного сигнала (рисунок 2).

    Если Вас заинтересовала данная схема, то Вы можете ознакомиться с нею более подробно в журнале-источнике, скачав его в нашей бесплатной библиотеке (ссылка в начале страницы).

    Тем, что информация может иметь очень высокую ценность сегодня уже никого не удивишь. Но если раньше реально опасаться утечки информации мог лишь ограниченный круг лиц, то сегодня с этим может столкнуться практически каждый. Первое, что обычно приходит на ум, это радиомикрофоны. Они широко распространены, т.к. собрать "жучок" по описанию в радиолюбительской литературе совсем несложно. Автору даже известен случай успешной сдачи экзаменов студентами при помощи радиомикрофона. Однако обнаружить такие радиомикрофоны можно без особого труда, стоит только собрать несложный детектор поля.

    Вместе с тем существует иной способ снятия информации. Известно, что звуковые волны в помещении вызывают микровибрации оконных стекол. Если направить на стекло ИК-поток, то большая его часть пройдет через стекло внутрь, однако будет и отражение. При этом отраженный поток окажется промодулированным речевой информацией. Для того чтобы оценить реальные возможности похищения информации таким путем и найти эффективный способ противодействия, автором была разработана экспериментальная схема прослушивающего устройства. Оно стоит из двух относительно независимых частей: ИК-передатчика и ИК-приемника.

    Принципиальная схема ИК-передатчика показана на рисунке 1. Основу передатчика составляет генератор прямоугольных импульсов на микросхеме D1. Выходной сигнал генератора с частотой 35 кГц поступает на базу транзистора VT1, который совместно с VT2 образует составной транзистор Дарлингтона. При помощи этого транзистора коммутируется ИК-светодиод VD1.


    Puc.1

    Отраженный сигнал поступает на вход приемника, схема которого показана на рисунке 2.


    Puc.2

    Налаживание правильно собранной схемы сводится к подстройке частоты передатчика резистором R1 до получения на выходе приемника максимальной амплитуды сигнала.

    ОУ К1401УД4 не имеет прямой замены среди отечественных микросхем, но вместо А1.1 и А1.2 можно применить любые ОУ с полевыми транзисторами на входе и частотой единичного усиления не менее 2,5 МГц. А1.3 можно заменить на любой ОУ широкого применения. Автор проверял такой вариант: КР574УД2Б и К140УД708. Заметно повысить характеристики приемника можно если применить малошумящие ОУ TLE2074CN и TLE2144CN фирмы Texas Instruments. Цоколевка этих микросхем полностью совпадает с цоколевкой К1401УД4. Светодиод и фотодиод можно взять зарубежного производства для систем ДУ

    В авторском варианте схема с К1401УД4 обеспечивала уверенный съем информации с расстояния 5-10 метров, вариант с TLE2074CN обеспечивал съем информации с расстояния до 15-20 метров, кроме того этот вариант в силу более низкого уровня шумов позволял уверенно разбирать тихие слова даже на фоне громкой музыки.

    Чувствительность устройства можно повысить дополнительными ИК-светодиодами, включенными параллельно VD1 передатчика (через свои ограничительные резисторы). Можно также увеличить коэффициент усиления приемника добавив каскад, аналогичный каскаду на А1.2, для этого можно использовать свободный ОУ микросхемы А1.

    Конструктивно светодиод и фотодиод расположены так, чтобы исключить прямое попадание ИК-излучения светодиода на фотодиод, но уверенно принимать отраженное излучение. Не исключено применение оптических систем, например таких как в Л.2. Питание приемника осуществляется от двух батареек типа "Крона", передатчик питается от четырех элементов типа R20 суммарным напряжением 6В (1,5В каждый).

    В заключение следует напомнить, что использование этого устройства в некоторых случаях запрещено законодательством РФ и может привести к административной или уголовной ответственности.